
Assessing performance of
FeniCS on ARM architectures

Marois Vincent - Summer Internship 2017

FEniCS in short

● Open-source computing platform for solving partial differential equations
● Enables users to translate scientific models into finite element code
● Python & C++ interface
● Runs on a multitude of platforms ranging from laptops to high-performance clusters.
● Comes as a Docker image

Aim of the project

● Run FEniCS on an architecture with several constraints (size, power,
memory…),

● Try to improve the performance of FEniCS using load-balancing,
● Retrieve sufficient data to compare the x86 & ARM platforms in the

context of computational simulations with FEniCS.

Summary

● Why ARM ?

● Setup

● Recompiling FEniCS for ARM

● Cores combinations & energy consumption

● Load-balancing

● Weak-scaling benchmark

● Conclusion

Why ARM ? ARM vs x86
ARM x86

Found mainly in mobile devices Found in desktop PCs, laptops, servers,
supercomputers

Reduced Instruction Set Computing (RISC) Complex Instruction Set Computing (CISC)

Lower power consumption Higher power consumption

(Relative) Lower performance Higher performance

big.LITTLE = Heterogeneous computing Same cores

January 2017 : “first ARM-based supercomputer called Isambard”

Setup : Odroid XU4

Samsung Exynos 5422 CPU (octacore ARM 32 bits)

2 Gbytes RAM

Power input : 4.8-5.2V / 0.8 -> 3.5A ~ 15W

Running Ubuntu Minimal

+ Wattmeter

Recompiling FEniCS for ARM

Creating a new Docker image :

Stable (‘top image’) 32 bits only, built on the odroid
Dev-env
Base
Phusion base
multiarch/ubuntu-core:armhf-xenial

Weak-scaling benchmark

Weak-scaling ?

Serial program solves problem of size P in time T

Weak scaling : Runs a larger problem. Solution size varies with fixed problem size per core

Strong scaling : Runs a problem faster. Solution size varies with fixed total problem size.

Test : solving Poisson equation in a unit cube mesh with 1 250 000 dofs.

4 “big” cores (Cortex-A15)

4 “small” cores (Cortex-A7)

Impact of combinations of both ?

-> Using both simultaneously is not

great : the big ones have to “wait” for

the small ones to finish

Using different cores combinations

-> 4 “big” cores draw 2x more

current than the 4 “small” ones

Yet they consume about the same

energy, as they are faster.

Using different cores combinations

Using different cores combinations
Small core :

- 60% more energy

consumed

- 2.5 x longer run

time.

Load-balancing

How to improve performance when using all 8

cores ?

Weights related to mesh partitioning :

The mesh partitioner (ParMETIS) takes the whole

mesh, and then splits it up into n parts

-> Modify these weights to put more load on “big”

cores

Load-balancing

Cells are no longer evenly

distributed among cores

Partitions associated with “big”

cores are bigger than the others

Load-balancing

Load-balancing
Not all steps are equal in
terms of improvement

Weak-scaling benchmark

Weak-scaling is as intended :

The number of degrees of freedom per

core doesn’t vary, but the total one

scales linearly

Weak-scaling benchmark

If the amount of time to complete a work unit with 1
processing element is t1, and the amount of time to
complete N of the same work units with N processing
elements is tN, the weak scaling efficiency (as a percentage
of linear) is given as: (t1 / tN) * 100%

Weak-scaling benchmark
Average dissipated power > 65W

Conclusion

● FEniCS correctly runs on an ARM machine

● It is possible to take advantage of the different types of ARM cores to improve performance

Next steps :

● Use the Odroid I/O ports for a real-world application

● Improve performance further

